The prime spectrum and simple modules over the quantum spatial ageing algebra

نویسندگان

  • V. V. Bavula
  • T. Lu
چکیده

For the algebra A in the title, its prime, primitive and maximal spectra are classified. The group of automorphisms of A is determined. The simple unfaithful A-modules and the simple weight A-modules are classified.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A scheme over quasi-prime spectrum of modules

The notions of quasi-prime submodules and developed  Zariski topology was introduced by the present authors in cite{ah10}. In this paper we use these notions to define a scheme. For an $R$-module $M$, let $X:={Qin qSpec(M) mid (Q:_R M)inSpec(R)}$. It is proved that $(X, mathcal{O}_X)$ is a locally ringed space. We study the morphism of locally ringed spaces induced by $R$-homomorphism $Mrightar...

متن کامل

On the Prime Spectrum of Torsion Modules

The paper uses a new approach to investigate prime submodules and minimal prime submodules of certain modules such as Artinian and torsion modules. In particular, we introduce a concrete formula for the radical of submodules of Artinian modules.

متن کامل

MOST RESULTS ON A-IDEALS IN MV -MODULES

In the present paper, by considering the notion of MV-modules which is the structure that naturally correspond to lu-modules over lu-rings, we prove some results on prime A-ideals and state some conditions to obtain a prime A-ideal in MV-modules. Also, we state some conditions that an A-ideal is not prime and investigate conditions that $Ksubseteq bigcup _{i=1}^{n}K_{i}$ implies $Ksubseteq K_{j...

متن کامل

On Max-injective modules

$R$-module. In this paper, we explore more properties of $Max$-injective modules and we study some conditions under which the maximal spectrum of $M$ is a $Max$-spectral space for its Zariski topology.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017